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THEORY OF THE HARDENING OF BINARY MELTS WITH AN 

EQUILIBRIUM TWO-PHASE ZONE 

Yu. A. Buevich, L. Yu. Iskakova, and V. V. Mansurov UDC 526.421.4 

Descriptions of processes involved in directed crystallization is normally accomplished 
on the basis of concepts dealing with the existence of a clearly defined phase-transition 
front and reduces to the solution of various versions of the Stefan problem [1-3]. If the 
liquid that is subjected to hardening is one consisting of numerous components, the motion 
of the front is accompanied by a redistribution of the composition of the phases, and in 
addition to the equations of heat conduction, it is necessary also to deal with the equations 
of diffusion and the relationship between the temperature of the phase transition and the 
composition of the melt, or its dependence on the composition of the solution near the front. 
Under specific conditions the effective temperature of the liquidus ahead of the front proves 
to be higher than the temperature of the liquid phase, i.e., a metastable supercooled zone 
is formed [4]. The same situation is encountered in the hardening of supercooled single- 
or multicomponent liquids. 

In the metastable region conditions prevail for the growth of the solid phase nuclei, 
generated spontaneously or in the impurity crystallization cores. Moreover, the front becomes 
morphologically unstable, which may lead to the development of a system of dendrites. Either 
mechanism enhances the appearance of a transition two-phase zone (in which the liquid and 
solid phases coexist) ahead of the front, as well as to the partial removal of the supercool- 
ing. In the general case this zone is thermodynamically in a state of nonequilibrium, and 
its characteristics determine the relationship between the kinetic processes of formation 
and the growth of the solid-phase elements, as well as the velocity at which the front is 
displaced. Supercooling ranging from the very lowest to several tens of degrees has been 
experimentally established [5-8]. 

The traditional frontal formulation describes approximately the situation in which 
the two-phase zone is almost entirely absent, which is characteristic of pure liquids under 
conditions in which the morphological instability stimulates development of cellular struc- 
tures, but no dendrites (the majority of semiconductor and certain metal melts). In the 
opposite extreme case (melts with nuclei or crystallization catalysts, liquid seals, true 
aqueous solutions) it is permissible to use an approximation of an equilibrium two-phase 
zone in which supercooling has been entirely removed [9-12]. Then, in connection with the 
fact that the literature is full of an excess of categorically extreme assertions either 
as to the significance of concentration supercooling in those cases in which it should appear 
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in accordance with frontal theory [13], or in terms of the physical inadequacy of models 
which tolerate this supercooling in any form [14, 15]. There is no basis for such asser- 
tions, if for no other reason than that they contradict experimental facts (see, for example, 
[5-8]). 

Hardening processes with a two-phase zone result in extremely complex problems, and 
in most of the research cumbersome numerical methods have therefore been used. These produce 
results that are poorly predictable, thus hindering generalization and the derivation of 
a clear concept as to the manner in which the physical and regime parameters exert their 
influence (see, for example, the review in [12]). The few attempts to analytically analyze 
the structure of a two-phase zone have usually been based on extreme and seriously disputed 
assumptions [ii, 16, 17]. Thus, in [ii] diffusion in this zone is neglected, and this leads 
to conclusions that are in poor agreement with experiment [18]. 

The processes of heat and mass transfer in an equilibrium two-phase zone are dealt 
with in the following with the aid of the small parameter method. If the thickness of the 
zone is small in comparison to the linear scales of the process, it can be replaced by a 
discontinuity surface with boundary conditions defined by the structure of the zone and 
differing substantially from the conditions specified at a conventional phase transition 
front. 

I. Basic Equations. Let us examine regions i and 2, occupied, respectively, by a 
binary melt or a solution and a solid. The boundaries of these regions consist of the extern- 
al parts F I and F 2 and the surfaces E l and Z2, between which this two-phase zone is situated. 
For purposes of simplification, the densities, specific heat capacities, coefficients of 
thermal conductivity and diffusion, the specific heat of fusion, and the coefficient of 
impurity distribution among the phases, are held to be independent of temperature and con- 
centration. We assume the phase densities to be identical, which offers us the opportunity 
of ignoring the convective transfer of heat and mass. In approximate terms, we assume the 
two-phase zone to be in thermodynamic equilibrium. This means that the temperatures of 
the phases in this zone are identical and related to the impurity concentration by a relation- 
ship which determines the iiquidus line. 

The processes of heat and mass transfer are described by the following equations: in 
regions 1 and 2. 

OO/O~ = a~AOj, OaJO~ = D j A ~ , /  = 1 , 2  ( 1 . 1 )  

(8- and oj are the temperature and concentration, and aj and Dj are the coefficients of 
thermal dlffusivity and diffusion) while in the two-phase zone we have 

o (co) oqD o ~q~ 
- 7 ~  = V @V O) + 9L-ju, -~. [(i - -  q~) ~] = V (Dvo) - -  kcr~-.  (1.2) 

Here ~ ~,, and 8denote the concentration of the 
the volumetric concentration of the solid phase, 
mean specific heat capacity and density; ~ and D 
conductivity and diffusion, dependent on ~; k is 
L is the specific heat of fusion. 

impurities in the liquid phase of the zone, 
and temperature; C and p represent the 
are the effective coefficients of thermal 
the coefficient of impurity distribution; 

We will write the equation for the liquidus line in linearized form: 

0 = 0 0 - - m a ,  ( 1 . 3 )  

w h e r e  O0 i s  t h e  c r y s t a l l i z a t i o n  t e m p e r a t u r e  f o r  a s i n g l e - c o m p o n e n t  s o l v e n t ,  and  t h e  p a r a m -  
e t e r  m may carry any sign. For the sake of definiteness, we will assume it to be positive 
in the following. Generalization of the theory for negative m, as well as for situations 
in which the linear relationship (1.3) is not suited, raises no fundamental difficulties. 

At the boundary of separation E l between the two-phase zone and the melt we have 

~) = 0, 0 = 01, (~ = 0~1, ~ n i v  0 ~_ i i n i v O i ,  

D n i v  (r = D i n i v  (ri. 
(1.4) 

At the surface of separation E 2 between the two-phase zone and the solid alloy the 
following conditions must be satisfied: 
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0~ = 0, 02 = ka ,  X2n2v02 - -  2n2v 0 = ( 1 . 5 )  

= o L ( I  - -  ~)u ,  D~n2vo~ - -  D n 2 v ~  = ( l  - -  k)( t  - -  ~ ) e u  

(n I and n: 2 are the unit vectors of the normal to Z x and X2, directed in the direction of 
the melt and u represents the local displacement velocity for Z 2 in the direction of n2). 
The two last conditions in (1.5) represent the equations of balance for heat and mass at 
the alloy surface. 

The boundary conditions determined by the specific manner in which the hardening pro- 
cess has been organized must be specified at the surfaces F I and F 2. These, as well as 
the initial conditions imposed on the unknowns of system (i.I), (1.2) do not affect the 
aims of this study and are therefore not dealt with below. The solution of the formulated 
problem must determine both the indicated unknowns and the surfaces Z ! and Z2- 

If the two-phase zone is not present, then Z l and nl coincide with Z 2 and n 2. In this 
event we have to solve only Eq. (i.i) with the boundary conditions at the surface of phase 
separation 

01 = 03 = 0 o - - m ~ l ,  ~ = k a l , ~ 2 n v O 2 - - ~ u n v O l  = pLy ,  

D 2 n v o 2  - -  D l n v ~  1 = ( i  - -  k )~ lu ,  ( 1 . 6 )  

which follow out of (1.3)-(1.5), i.e., we arrive at a standard formulation of the frontal 
problem related to the directed hardening of a binary melt. 

Substantial simplification in the formulated problem can be achieved by taking note, 
first of all, that D 2 is usually many orders of magnitude lower than DI. This indicates 
that in the majority of cases there is absolutely no sense in dealing with the diffusion 
of the impurity in the solid material. Second, the coefficients of thermal diffusivity 
in each of the cases are several orders of magnitude higher than the diffusion factor for 
the impurity in the melt and the relaxation times of the temperature fields are consequently 
smaller than the relaxation times of the concentration fields. Therefore, with a high degree 
of accuracy, we can limit ourselves to an analysis of the processes that are quasisteady 
in terms of heat transfer, neglecting the time derivatives in the first of the equations 
in (I.I) and (1.2). The simplified formulation of the problem follows directly out of (!~ 
(1.5) and is therefore not written out here. 

2. Equations for the Two-Phase Zone. . Let us assume that the curvature radii (~R) 
of the surfaces Zm and E2 are considerably greater than the distance 6 between them, and 
let us represent the temperature and concentration fields in the melt near these surfaces 
in the following form: 

01 = 01o + gl~, 03 = 0~o + ~ (~  + 5), ~1 = ~1o + hl~, ( 2 . 1 )  

where $ is a coordinate reckoned along the normal to the surface E l, on which ~ = 0, in 
the direction of the melt. It follows from (1.3) and (1.4) that 

01o = O o - - m O l o ,  O2o = O o - - m ~ ] ~ - ~ . 6 ,  h l = - - g J m .  ( 2 . 2 )  

The quantities 8j0, o10, and gj depend on the tangential coordinates with scale R and on 
time. In view of the assumed inequalitity R m 6 we can neglect the coordinate dependence 
of these quantities in the transformation of Eqs. (1.2). As a result, in the accompanying 
system of coordinates, from (1.2) and (1.3) we derive the equations for the two-phase zone: 

(2.3) 

while from (1.4) and (1.5), with consideration of (2.1) and (2.2), we derive the pertinent 
boundary conditions 

q) = O, 0=(ilo, #(;/~ = -- gl/rn, ~=0; 

%2g2 + rn~,,O~/O~ ---- p L ( l - -  r ~ = - - 5 ;  ( 2 . 4 )  

D,Oc~/O~ = - -  ( i  - -  k) ( l  - -  r au,  ~ = - -  5. 
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Here we have introduced X, = ~(~,) and D, = D(~,) (~, is the value of,~ when ~ = -6) and 
it has been taken into consideration that D(0) = DI and ~(0) = %~. 

Problem (2.3), (2.4) describes the structure of the two-phase zone in one-dimensional 
processes of directed crystallization under specified flows of heat and impurity mass. In 
the most general case expression (2.1) should be treated as an internal asymptotic expansion 
of the fields of temperature and concentration in the liquid and solid phases. 

We now introduce the characteristic frequency m for change in parameters in (2.1) and 
the natural scale for the duration of the hardening process, i.e., Dl/u 0 (u 0 is the charac- 
teristic value for the velocity of the alloy surface displacement), as well as the following 
dimensionless variables and parameters: 

(~ u o C ~--- - -  (~10 ' %, C~o=--%, e = ~ ,  ( 2 . 5 )  t ~ (OT~ X 

P m% L 2 D I pL' Gj = Dlgj DI--~-~ 
m%u o' ? = u~' 

(o 0 is the characteristic concentration value). 
we derive the problem 

u 0 

In these variables from (2.3) and (2.4) 

[ 
+ e(s + eV/x) L(I - -  9 )  ~ - -  (1 

9 = O, c = C~o, Oc/Ox = --eG~, x = O; 

p ~, ~c D, Oc 
~ ~ + e P G  2 = e ( t - 9 , ) 3 ,  n 1 0 x  e ( t - - k )  ( l - - ~ , ) S c ,  X = - - i  

(the specification of the initial conditions, not written out here, is also understood). 

An analysis of the experimental data shows that in the growth of monocrystals the dimen- 
sionless thickness ~ of the two-phase zone is usually small in comparison to unity. This 
is obviously also valid for any processes of directed hardening, provided that the parameter 
values remain close to the critical, where the condition of metastability is first encoun- 
tered. At the same time, there exist processes (for example, the continuous casting of 
steel [18]) in which ~ is several orders of magnitude greater than unity. It is therefore 
expedient to examine the extreme cases of small and large E, using the small parameter meth- 
od. 

In order to close (2.6) we have to find the relationship between the transfer coeffi- 
cients %/X 2 and D/D l in their dependence on 9, and these are determined by the topological 
structure of the two-phase zone. Here we will use the simplest formulas 

L/%~ = (I -- ~)• + ~, DID I = I -- % x = LI/~2, (2.7) 

corresponding to the familiar rule of mixtures. These formulas must correspond nearly to 
reality, if it is dendrites that the zone contains predominantly. For a zone with discrete 
crystals it is, of course, more correct to use the results from transfer theory in disperse 
mixtures. 

3. Structure of a Narrow Two-Phase Zone. Let us examine the solutions of problem 
(2.6) with the closing relationships (2.7) for the case in which g ~ i. We will assume 
that 

c = clo + e~o + e,1 + e~,~ + ...), W = e% + e2% + ... ( 3 . 1 )  

Substituting this into (2.6) and separating the terms of various exponents of ~, we obtain 
the problems for @i and~gi. Assuming, for the sake of definiteness, that ~ ~ i, s ~ i, 
from the relationship of the first order with respect to g we have 

% = - -Glx .  ( 3 . 2 )  
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The second-order equations subsequent to the single integration involving the use of the 
boundary conditions for x = 0 and (2.7) assume the form 

P• + [ s - - P ( l  --  •  = 0, 

o ~ / a x  + [--SC~o(t - -  k) + G l l ~  = (ydc~o~t -1- sG~)x. 

Hence it follows that 

~ l =  Ax2/2,  % = B x ,  A =  p( t -pxx )  a 1 - s B ,  

B = PX ('~ dClo/dt -If- sG1) 
P~ [a I - -  (t - -  k) sqo ] + P (t - -  • G 1 - -  s" 

( 3 . 3 )  

The process of deriving the subsequent terms of the series in (3.1) is easily extended; 
the use of the small-parameter method in this case involves no singularities. 

With accuracy to terms on the order of g2 we will write out the conditions for x = 
-i inclusively. Using (2.7) and (3.1)-(3.3), from (2.6) we have 

P(G2 - -  • + eP(- - •  q- (1 - -  • = (t + eB)s, 

G § eA = (1 - k)(c~o + 2G)s. 
( 3 . 4 )  

Additionally assuming that s = So + Esl + ... and bearing in mind in the first of the relation- 
ships (3.4) only the principal terms (on the order of E~ we have 

s o = P ( G 2 - - z G ~ ) .  

From the second of the relationships in (3.4) we have 

E 
G 1 - -  ( l  - -  k )  80c10 

(i - -  k) (see 1 + slClo ) - -  A " 

(3.5) 

Using this in (3.3), within the limits of the assumed accuracy, we write 

A = ~deao/dt + soG1, B = ~A/(G1 - -  G2). ( 3 . 6 )  

In the first of the relationships in (3.4) we will examine the terms with the order 
of e and this yields s I = 0. This is quite natural, since the rate of the process is limited 
by the removal of heat from the crystallization zone, which is determined by the temperature 
gradients gl and g2, but not by the structure of this zone. Therefore, 

( l - - k )  s0el0--V 1 
8 = 7dclo/dt_}_ksoG1 , 

and here, in this case, and in (3.6), so can be replaced by s. 
variables with the aid of (2.5), from (3.1)-(3.7) we derive 

( 3 . 7 )  

Returning to the dimensional 

U =  - pL , (~__Olo - -  ~--}-2--~1 ---~--1- U ~2, 

X md(llo/d'~ -}- ugl ~ (t " k) ttalo - -  Dlgl]m 
~ = D--~ g l -  g~ ~' ~ ~ ( -  6, 0), ~ = d~old ~ + k~gd.  ~ 

(3.8) 

As e + 0, from (3.4) we could derive the expression in (3.8) for u and the following rela- 
tionship [taking (2.2) into consideration]: 

O10=~l Ig=0  t - - k  u m t k 0g |B=--o' 

d e s c r i b i n g  t h e  q u a s i s t e a d y  m o t i o n  o f  t h e  c r y s t a l l i z a t i o n  f r o n t  w i t h o u t  t h e  t w o - p h a s e  z o n e .  

We c a n  s e e  f r o m  ( 3 . 8 )  t h a t  t h e  n o n s t e a d i n e s s  o f  t h e  h a r d e n i n g  p r o c e s s  may h a v e  a s i g n i -  
f i c a n t  e f f e c t  o n  t h e  c h a r a c t e r i s t i c s  o f  t h e  t w o - p h a s e  z o n e .  I n  p a r t i c u l a r ,  w h e n  m > 0 a n d  
k < 1 ,  t h e  e s t a b l i s h m e n t  o f  a s t e a d y  r e g i m e  i s  a c c o m p a n i e d  b y  p r o g r e s s i v e  e x p u l s i o n  o f  t h e  
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impurity in the direction of the melt (dol0/dm > 0), which corresponds to an increase in 
the thickness of the zone from the initial zero to some steady value. When m < 0 (and 
k > i) the surface concentration diminishes monotonically, and the derivative do10/dm < 0 
declines in absolute value, i.e., an analogous conclusion regarding the change in the thick- 
ness of the two-phase zone follows out of (3.8). 

The quantities 5, u, o, and;~ must, of course, be positive. In the steady regime, 
together with the requirement of smallness for the dimensionless thickness s of the two-phase 
zone, this corresponds to satisfaction of the inequalities 

0 < m(i  - -  k)ualo - -  Dig1 << kD,gl ,  ( 3 . 9 )  

whose s i g n i f i c a n c e  w i l l  be c l a r i f i e d  b e l o w .  

4.  The Broad  Two-Phase  Zone .  L e t  us  now e x a m i n e  t h e  o p p o s i t e  e x t r e m e  c a s e  s >> 1,  
a s s u m i n g  f o r  t h e  s a k e  o f  s i m p l i c i t y  t h a t  s2X ~ 1, i . e . ,  t h a t  t h e  h a r d e n i n g  p r o c e s s  i s  n e a r l y  
s t e a d y .  Then,  i n  t h e  s e c o n d  o f  t h e  e q u a t i o n s  i n  ( 2 . 6 )  r e t a i n i n g  t h e  h i g h e r - o r d e r  t e r m s  
w i t h  r e s p e c t  t o  E, we f o r m a l l y  o b t a i n  (1 - ~ ) 8 c / 8 x  - (1 - k )cS i~ /Sx  = 0 and a l s o  

cp = i - (c~olc)'t, n = tl(l  - -  k). (4.1) 

This corresponds to the model put forth by V. T. Borisov [i0-12], in which the diffusion 
of the impurity in the two-phase zone is neglected. According to (4.1) and the boundary 
condition for 8c/8x in (2.6) for P, s, and ci0 ~ i, we have 8c/8x ~ eG 1 (we will drop the 
modulus notation here and below). From the first of the equations in (2.6) it follows that 
82c/8x 2 ~ ~81qD/~x ~ m2GI. Now evaluating the terms in the second equation, we write 

~c 0 D 

i.e., the diffusion term which was neglected in the derivation of (4.1) in actuality has 
the same order of magnitude as the terms that we retain. Thus, the procedure used to derive 
(4.1) and this relationship itself cannot be held to be correct and we cannot neglect diffu- 
sion in the two-phase zone. 

It is also highly probable that when the zone is in a state of equilibrium, its dimen- 
sionless thickness cannot possibly be greater than unity. In order to demonstrate this 
contention from its qualitative aspects, let us examine the second of the equations in (2.6), 
using (2.7), assuming that s ~ i and replacing (I -~)-18:~/3x by the zone-averaged value 
of T = in(l - ~,) ~ i. Then 

d2c/dx 2 + (e -- T)dc/dx + e(k -- i )Tc  ~ O. 

When s ~ 1 the solution of this equation, satisfying the conditions with x = 0 in (2.6), has 
the form 

c ~ G1e -ex + (Clo - -  G1)e(1-k)rx 

Substituting this into the boundary condition for x = -I in (2.6), describing the balance 
of mass and the surface of the alloy, we obtain 

kG 1 
e~--In (%o -- G1) (i -- k) --(l--k) T" (4.2) 

Hence it follows that for real processes e ~ i. Apparently, broad two-phase zones, 
such as those that are observed, for example, in the continuous pouring of steel [18], can 
hardly be regarded as ones that are in equilibrium. It is possible that the primary cause 
for the divergence between experiment and theory, as discussed in [18], is to be found in 
this fact. 

5. Formulation of Problems Dealing with Directed Hardening in an Equilibrium Two-Phase 
Zone. If the thickness ~ of the two-phase zone is small in comparison to the linear scales 
of the process and, in particular, with the curvature radii of the alloy surface, it is 
natural to replace this zone by the discontinuity surface at which not only the concentra- 
tion but temperature undergo discontinuities. 
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When diffusion in the melt and the relaxation effect accompanying the establishment 
of quasisteady fields of temperature on both sides of the two-phase zone are neglected, 
for the unknown functions 81, 82, and o I from (I.i) we obtain the following equations: 

A01 = A02 = O"OOl/OT= D1Aal" ( 5 . 1 )  

The boundary conditions at the discontinuity surface replacing the zone follow out of (1.3)- 
(1.5), (2.2) and the contents of Sec. 3. Thus we have 

01 = 02 + 01~ = Oo - -  rag1, nv01 = --ranVOl, 

%~n V 02 - -  %1n V 01 = pL u, 
(5.2) 

where the jump in the temperature in the zone, provided that the latter is narrow, is given 
by 

u6 m6 001] 6, 

5 ~ [m(t --  k)u~ 1 - -  Dlnv011(kunv01 q- rnOal/OJ "1. 

( 5 . 3 )  

If there is no two-phase zone, the same boundary conditions as in (5.2) are obtained from 
(1.6), but with the conditions for the derivatives of 81 and ~i with respect to the normal 
coordinate written in (1.6) replaced by the condition of material balance. 

Relations (5.3) correspond to the model of a narrow two-phase zone, but the form of 
the condition (5.2) does not depend on this model: the structure of the zone affects only 
the magnitude of the temperature discontinuity 812. If we are dealing with processes that 
have specified flows of heat to the external boundaries of the system, this discontinuity 
does not affect the gradients of the temperature fields. The solution of problem (5.1), 
(5.2), given appropriate initial conditions, then fully describes the macrokinetics of such 
processes for an arbitrary value of e, i.e., with an arbitrary structure for the equilibrium 
zone. 

The condition of absence of concentration supercooling ahead of a clearly defined phase- 
transition front obviously involves satisfaction of the inequalities -mnVo z <:nY81 [or 
-mhl < gl, see (2.1)]. If this condition is violated in some segment of the separation sur- 
face, a two-phase zone is formed ahead of such a segment, and under the conditions of thermo- 
dynamic equilibrium we have -mnYo I = nV8 I. Thus, in the general case discontinuous boundary 
conditions are specified for this surface. 

For purposes of illustration let us examine the steady-state hardening process for 
given temperature gradients (and flows of heat) at some distance from the surface of separa- 
tion. It follows from the conventional frontal formulation that 

t - - k  u~ 

where  o0 i s  t h e  c o n c e n t r a t i o n  o f  t h e  m e l t  a t  some d i s t a n c e  f rom t h e  f r o n t ,  as  w e l l  as  t h e  
e x p r e s s i o n  in  ( 3 . 8 )  f o r  t h e  v e l o c i t y  u.  The c o n d i t i o n  f o r  t h e  v a l i d i t y  o f  ( 5 . 4 )  r e d u c e s  
t o  t h e  r e q u i r e m e n t  t h a t  c o n c e n t r a t e d  s u p e r c o o l i n g  be a b s e n t ,  t h e  l a t t e r  o c c u r r i n g  when 
mo0(1 - k )u(kD1)  -1 > g l .  When we t a k e  ( 5 . 4 )  i n t o  c o n s i d e r a t i o n ,  we see  t h a t  t h i s  i n e q u a l i t y  
i s  i d e n t i c a l  t o  t h e  l e f t - h a n d  i n e q u a l i t y  in  ( 3 . 9 ) .  Under t h e s e  c o n d i t i o n s ,  in  t h e  p l a c e  
o f  ( 5 . 4 )  we o b t a i n  

f f l=ff0  + DlglexPmu --~ " 

The s i g n i f i c a n t  d i f f e r e n c e  f rom ( 5 . 4 )  o f  t h e  f i e l d  in  ( 5 . 5 ) ,  d e p e n d e n t  on t h e  t e m p e r a t u r e  
g r a d i e n t  in  t h e  m e l t ,  i s  o b v i o u s .  The c o n d i t i o n  o f  n a r r o w n e s s  f o r  t h e  e q u i l i b r i u m  zone 
[ t h e  r i g h t - h a n d  i n e q u a l i t y  in  ( 3 . 9 ) ]  can be r e p r e s e n t e d  as f o l l o w s ,  t a k i n g  i n t o  c o n s i d e r a -  
t i o n  (5.5): 

m ( t _ k ) u a o < < 2 k D 1 g l .  ( 5 . 6 )  
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As the velocity u is increased as a consequence of the intensification of the removal of 
heat from the alloy, provided that all of the remaining parameters have been fixed, a frontal 
regime corresponding to the field in (5.4) is initially realized. When the velocity sur- 
passes the critical value of u* = kD1gl/(l - k)mo0 this regime is replaced by a regime with 
a two-phase zone, and the field from (5.5) is established in this case. The formation of 
such a zone is facilitated by a reduction in the coefficient of impurity distribution and 
by the flow of heat to the melt, and with an increase in the concentration of the melt and 
in the slope of the liquidus line. The strong inequality (5.6) under these critical condi- 
tions reduces to the requirement that 1 ~ 2 (not satisfied, in the strict sense). Therefore, 
the concept of the narrow two-phase zone introduced earlier apparently has only a methodo- 
logical significance, while relationships (5.3) should be regarded as tentative estimates. 
If we also take into consideration the conclusions of Sec. 4, we find that if the two-phase 
zone is in a state of equilibrium, its dimensionless thickness e ~ i. Analysis of the struc- 
ture of such a zone and the subsequent calculation of the discontinuity in 812, which plays 
a role in (5.2), therefore requires numerical solution of Eqs. (2.6), in which we can de- 
tect the important problem of the subsequent studies. 

In conclusion, let us note that this analysis is directly applicable to melts or solu- 
tions of comparatively low concentrations, provided that the linearized relationship (1.3) 
is approximately valid. For concentrated systems (particularly for small k, i.e., with 
strong expulsion of the impurity from the separation surface) it is necessary to take into 
consideration the nonlinearity of the liquidus equation and, what is most important, the 
presence of singular points on the phase-equilibrium diagrams, corresponding, in particular, 
to the eutectic or peritectic. The latter may alter the nature of the hardening process, 
even from a qualitative standpoint, and they therefore deserve separate attention. 
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ABSORPTION OF SOUND NEAR A SEMIINFINITE RIGID PLANE 

V. A. Murga UDC 534.2:532 

i. Research was conducted into the absorption of sound in a viscous heat-conducting 
compressible fluid (or gas) in the familiar work by Konstantinov [i] for the reflection 
of a plane sound wave from an infinite rigid plane. The absorption factor in this case, 
defined as the ratio of the absorbed energy to the incident energy, given small angles of 
incidence (~ ~ i), is equal to 

d = 4M[(I + 2M + 2M:), (1 .1)  

where M = ko(v/2~)i/2/~; k0 = ~/c (~ is the angular frequency of the oscillations and c 
is the speed of sound); v is the coefficient of the kinematic viscosity of the fluid (for 
the sake of brevity, here and below we will assume that the dissipation of the sonic energy 
is governed exclusively by the viscosity of the medium); moreover, it is assumed that k0(v/ 
m)i/2 ~ I. Of particular interest is the behavior of the coefficient d in the angles-of- 
incidence region ~ ~ k0(~/~)~/2: it changes sharply with respect to the angle and when 

= k0(v/~)l/2 attains a maximum equal to 2(V~--- i), and is it not dependent on the prop- 
erties of the fluid and on the frequency of oscillation (the Konstantinov effect [2]). 

Let us note that for a real case of a finite plate in precisely this area of angles 
of incidence formula (i.i) accurately reflects the process which takes place at such a great 
distance from the edge of the plate, where the incident wave itself is virtually attenuated 
owing to absorption in free space. Indeed, we know from the theory of diffraction that 
a reflected wave near the surface of a plate may be regarded as plane (as was assumed in 
[I]) at a distance x from the edge of the plate such that the condition ~ik0x m i is satis- 
fied. The coefficient of sound absorption in free space, i.e., 7 = 2k03~/m [3], so that 
if ~ ~ k0(~/~) I/2, the indicated condition assumes the form of 7x ~ i, which indicates 
the strong attenuation of the incident wave at a distance x along the plate. 

In order to investigate the sound absorption near a finite plate in the case of any 
small angle of incidence and at such distances from the edge of the plate that the incident 
wave has not yet been attenuated, it is necessary to drop the assumption that the "reflected" 
field is a plane wave. This study has been undertaken in the present paper for the case 
of a semiinfinite plane. It has been demonstrated that the effect of viscosity and the con- 
dition of adhesion at the plane leads to a unique "waveguide" effect which consists of the 
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